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We propose a new broadband beamformer design technique which produces an optimal receiver beam pattern for any set of
field measurements in space and time. The modal subspace decomposition (MSD) technique is based on projecting a desired
pattern into the subspace of patterns achievable by a particular set of space-time sampling positions. This projection is the
optimal achievable pattern in the sense that it minimizes the mean-squared error (MSE) between the desired and actual pat-
terns. The main advantage of the technique is versatility as it can be applied to both sparse and dense arrays, nonuniform
and asynchronous time sampling, and dynamic arrays where sensors can move throughout space. It can also be applied to any
beam pattern type, including frequency-invariant and spot pattern designs. A simple extension to the technique is presented
for oversampled arrays, which allows high-resolution beamforming whilst carefully controlling input energy and error sensitiv-
ity.
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1. INTRODUCTION

1.1. Motivation and background

Beamforming is an important area of research with applica-
tions in acoustics, wireless communications, sonar, and radar
[1, 2]. A broadband beamformer at the receiver is based on a
time-sampled sensor array—a finite set of wavefield samples
taken throughout space and time. Weighted linear combina-
tions of these space-time samples are used to filter far-field
sources based on their angle of arrival and frequency con-
tent.

More formally, the response of a broadband beamformer
can be expressed as a beam pattern—a 2D function of angle
and frequency/wave number. A perfect beam pattern is de-
signed to reject noise and interfering sources, but depending
on sensor positions and time sampling, this desired pattern
may not be achievable by a particular array. The beamformer
design problem is to find an achievable pattern as close as
possible to the desired pattern.

One popular technique for beam pattern design is the
frequency decomposition method [3, 4]. In this method, the
time sequences measured at each sensor are projected into

narrowband frequency bins using the discrete Fourier trans-
form (DFT). A broadband beam pattern can then be created
by using established narrowband beamforming techniques
within each frequency bin.

One limitation of this technique is that sensors must be
fixed, and closely spaced. To avoid spatial aliasing in the high-
est frequency bin, sensors must be placed no further than half
of the corresponding wavelength apart [5–7].

Another limitation is that perfect frequency decomposi-
tion would require an infinite-length time sequence sampled
at the Nyquist rate (twice the highest design frequency). Al-
though infinite sequences are not possible in a real-world ap-
plication, the decomposition can be well approximated using
a windowed DFT if sufficiently long time sequences are avail-
able [8].

In many applications, however, getting a sequence of rea-
sonable length may be impossible. Consider an environment
where the source field is changing rapidly—past samples will
quickly become useless, and short time sequences must be
used to maintain relevance. Also, sequences may need to be
shortened to minimize the computational complexity of fil-
tering.
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On top of these limitations, traditional broadband beam-
forming techniques suffer from a lack of versatility. Most
implementations focus on the design of frequency-invariant
beam patterns, where the angular response is constant across
all frequencies, and there is little scope for more com-
plex patterns. They are also generally based on the sim-
ple model of a static sensor array in space, sampled syn-
chronously and uniformly throughout time. This can cause
problems in real-world applications, such as sensor net-
works, which may require asynchronous sampling (where
different sensors are sampled at different times), or dy-
namic arrays (where sensors are able to move throughout
space).

One further interesting property of beamformers is the
super-resolution effect, where infinite levels of directivity can
be achieved using closely spaced sensor elements [9, 10].
Super-resolution beamformers tend to be unsuitable for real-
world applications as they require huge amounts of energy
in weighting coefficients, and become extremely sensitive to
small measurement errors [11, 12].

1.2. Problem statement and contributions

The challenge is to develop a beamformer design technique
which addresses the weaknesses and limitations identified in
the previous section. This “ideal” technique would be appli-
cable to any desired beam pattern (including both frequency-
invariant and more complex types), any sampling scheme
(including both sparse and dense samplings, nonuniform
and asynchronous time sampling, and moving sensors), and
would always produce the optimal achievable pattern (where
optimality is defined as minimizing the mean-square error,
or MSE, between the desired and actual patterns).

In this paper, we introduce a method for “ideal” beam-
former design based on a modal subspace decomposition
(MSD). Although previous authors [13] have used projection
into a modal subspace to optimize performance given a set of
linear constraints, we are solving a slightly different problem.
Rather than projecting valid beamformer weightings into an
estimation space, we optimize the beamformer by projecting
a desired (but perhaps unachievable) beam pattern into the
subspace of achievable patterns.

(1) In Section 3, we define the subspace of achievable
beam patterns for any set of space-time sampling po-
sitions, and derive a modal basis for this space. This
basis is independent of the wavefield and desired beam
pattern, and depends only on the sampling geometry
in space and time.

(2) In Section 4, we show that the optimal (in terms of
minimizing the MSE) beamformer can be designed
by orthogonally projecting any desired beam pattern
into the subspace of achievable patterns. This projec-
tion can be performed by projection into the individ-
ual modal basis functions.

(3) Some design examples are presented in Section 5
to show the usefulness of the MSD technique for
frequency-invariant and spot pattern designs, on both
dense and sparse sampling arrays.

(4) Optimal beam pattern design for closely spaced arrays
will introduce the super-resolution effect, and the as-
sociated problems with error sensitivity and high input
power. In Section 6, we show how a modified subspace
projection based on a reduced set of modes can be used
to find suitable tradeoff between resolution and these
negative effects.

(5) In Section 7, we discuss the simple extension of this
method to more complex beamforming problems such
as near-field and azimuth/elevation.

2. INTRODUCTION TO BEAMFORMING

In broadband far-field beamforming, the source distribution
is a 2D function F(k,φ), where φ is the angle of arrival, k =
2π f /c is the wave number, c is the speed of wave propagation,
and f is frequency.

Consider wavefields f (x, t) in space and time. For nota-
tional simplicity, we consider only 2D space (denoted by the
position vector x = (x, θ) in polar coordinates, where x = |x|
and θ = ∠x). The extension to 3D space is considered in
Section 7. A wavefield is generated by integrating the far-field
distribution over all azimuth angles (φ = [−π,π]), and some
bandlimited range of wave-numbers (k = [k1, k2]) [14],

f (x, t) =
∫ k2

k1

∫ π

−π
F(k,φ)e jk[ct+x cos(θ−φ)]kdφdk. (1)

This wavefield must now be sampled in space and time.
An example of a traditional broadband beamforming array
is depicted in Figure 1(a), where an array of Q sensors in
space (xq, for q = 0, . . . ,Q − 1) is sampled uniformly and
synchronously at N relative snapshots throughout time (tn,
for n = 0, . . . ,N − 1). Thus, the space-time sampling can be
completely specified by a uniform N × Q element grid—the
Cartesian product of the time and space sampling.

This simple grid framework is inadequate to deal with
more complex space-time sampling schemes, some exam-
ples of which are depicted in Figure 1(b). Consider asyn-
chronous sampling where different sensors are sampled at
different times, or consider dynamic arrays where the relative
spatial position of sensors changes throughout time. To deal
with these complexities, a more general model for space-time
sampling is needed, which subsumes the traditional Carte-
sian product framework. An obvious choice is to treat each
space-time sample independently.

Definition 1 (space-time sampler). An M-dimensional space-
time sampler is defined by a set of unique positions in space
and relative time (xm, tm) for m = 0, . . . ,M−1. Thus, at some
time t, the sampler will take wavefield samples at M, f (xm, t+
tm).

In this generalized model, the traditional array with Q
sensors and N snapshots is represented as an M = N × Q
dimensional space-time sampler, with m = qN + n. That
is, each space-time sample is treated as an individual sensor
element.
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Figure 1: Comparison of a traditional array sampling scheme with the more complex model introduced in Definition 1 (each box represents
a single space-time sample). (a) Traditional array: a uniform grid of space-time samples formed from the Cartesian product of time and
space sampling; (b) Space-time sampler: treating each space-time sample individually allows traditional uniform sampling (x0), nonuniform
asynchronous sampling (x1), and moving sensors (x2).

Following on from the traditional view of sensor ar-
rays, the traditional view of a broadband beamformer is a
set of length-N FIR filters attached to each of the Q sen-
sors. We generalize this notation to match the notation of
Definition 1. Any possible linear beamformer can be repre-
sented as a linear combination of the M field observations.

Definition 2 (space-time beamformer). A beamformer for an
M-element space-time sampler is uniquely specified by an
M-length vector of complex finite weights w = [w0, . . . ,
wM−1]T . The output of this beamformer at some time ts will
be

z
(
ts
) =

M−1∑
m=0

wm f
(
xm, tm + ts

)
. (2)

It is worth noting that this more general model subsumes
the traditional FIR filter model. Every traditional broadband
beamformer can be equivalently expressed in the form of
Definition 2 by simply treating each filter coefficient as an
independent weighting coefficient.

Combining (1) and (2), the beamformer output can be
expressed as

z
(
ts
) =

∫ k2

k1

∫ π

−π
F(k,φ)Wach(k,φ)e jkctskdφdk, (3)

where we have defined an achievable beampattern [2],

Wach(k,φ) �
M−1∑
m=0

wme
jk[ctm+xm cos(θm−φ)]. (4)

As long as every space-time sample is unique (i.e., no point
in space-time is sampled more than once), every achievable
beam pattern Wach(k,φ) will correspond uniquely with a
particular vector of weighting coefficients w.

Consider some desirable, but perhaps unachievable,
beam pattern denoted by Wdes(k,φ). For a particular space-
time sampler, the beamforming problem is to find a set of

weightings w which produce a beam pattern Wach(k,φ) as
close as possible to the desired pattern. One measure of close-
ness is the mean-squared error (MSE) between the desired
and achievable patterns:

MSE =
∫ k2

k1

∫ π

−π

∣∣Wdes(k,φ)−Wach(k,φ)
∣∣2
kdφdk. (5)

3. MODAL SUBSPACE DECOMPOSITION

3.1. Operators and spaces

In this section, we derive a modal basis for the subspace of
achievable beam patterns. The first step is to formally define
some vector and function spaces.

Define S, the space of all finite-energy weight vectors,
and therefore the space of all attainable beamformers

S �
{
w : |w| <∞}, (6)

based on the inner product

〈w, y〉S =
M−1∑
m=0

wmy
∗
m, (7)

where ∗ denotes the complex conjugate, and the associated
norm

|w|S =
√
〈w,w〉S . (8)

S is an M-dimensional complex vector space.
As mentioned in the previous section, the beam pattern

design process is often based on some desirable beam pattern
denoted by Wdes(k,φ). To formalize this concept, we define
F , the space of desired patterns as those patterns with finite
energy over the design ranges of k and φ,

F �
{
Wdes(k,φ) :

∣∣Wdes
∣∣

F <∞}, (9)
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Figure 2: The relationships between spaces and operators.

based on the inner product

〈W ,Y〉F =
∫ k2

k1

∫ π

−π
W(k,φ)Y∗(k,φ)kdφdk, (10)

and associated norm

|W|F =
√
〈W ,W〉F . (11)

F is an infinite-dimensional, separable, Hilbert space 1.
Given a finite-dimensional space-time sampler, not all

desired beam patterns will be achievable. With this in mind,
we can partition F into two orthogonal subspaces—W is the
space of achievable beampatterns and⊥W is the space of un-
achievable patterns. Now, any desired patterm Wdes(k,φ) ∈
F can be expressed as

Wdes(k,φ) =Wach(k,φ) + Wunach(k,φ), (12)

where Wach(k,φ) ∈W and Wunach(k,φ) ∈ ⊥W .
As mentioned earlier, each achievable pattern

Wach(k,φ) ∈ W has a unique mapping with a weight-
ing vector w ∈ S. Thus, since S is an M-dimensional
space, W must be an M-dimensional proper subspace of F .
The mapping between the two is defined by an invertible
linear operator A : S → W that projects a set of weighting
coefficients to its corresponding achievable beam pattern.
From (4), the operator is defined by

Wach(k,φ) = Aw =
M−1∑
m=0

wme
jk[ctm+xm cos(θm−φ)]. (13)

The relationships between these spaces and operators are
summarized in Figure 2.

3.2. Modal bases

Given that the adjoint operator A∗ exists (see the appendix),
operators A∗A and AA∗ are known to have some particu-
larly useful properties [15]. Specifically, the M eigenvectors

1 A Hilbert space is a complete inner product space. Many of the main re-
sults of linear algebra generalize neatly to linear operations on Hilbert
spaces. For more details, see [15].

of A∗A denoted by un form a complete orthonormal basis
for S, and the M eigenfunctions of AA∗ denoted by Un(k,φ)
form a complete orthonormal basis for W . Although in-
finitely many different sets of basis functions can be found
for these spaces, these particular sets are uniquely significant
due to their relation to the operator A, and so are known as
modes.

The vector modes un are found in the appendix to be the
solutions to a matrix eigenvector equation of the form

Zun = λnun for n = 0, . . . ,M − 1, (14)

where the elements of the M ×M matrix Z are given by

Zm,m′ = 2π
∫ k2

k1

e jkc(tm′−tm)J0
(
k
∥∥xm − xm′

∥∥)kdk, (15)

and the real, nonnegative eigenvalues are ordered to form a
monotonically decreasing series λ0 ≥ λ1 ≥ · · · ≥ λM−1. In
general, this integral has no closed-form solution, but can be
calculated numerically to any required degree of accuracy.

Any weighting vector can be expressed as a linear combi-
nation of these vector modes,

w =
M−1∑
n=0

〈
w,un

〉
Sun. (16)

The continuous modes Un(k,φ) are found in the ap-
pendix to be given by

Un(k,φ) = 1√
λn

M−1∑
m=0

un,me
jk[ctm+xm cos(θm−φ)], (17)

where un,m denotes the mth element of the nth vector mode.
Any achievable beam pattern can be expressed as a linear
combination of these continuous modes,

Wach(k,φ) =
M−1∑
n=0

〈
Wach,Un

〉
F Un(k,φ). (18)

From (13) and (17), the vector and continuous modes are
related by the relationship

√
λnUn(k,φ) = Aun, (19)

where λn are the matrix eigenvalues from (14).
To summarize, given M space-time sampling locations, a

set of M vector modes un can be derived which form a basis
for the space of allowable weight vectors. Each vector mode
can be used to derive a continuous mode Un(k,φ) and the
set of M continuous modes forms a basis for the space of
achievable beam patterns. These modes are independent of
the wavefield and desired beam pattern, and depend only on
the geometry of the sampling. Thus, the modal bases need
only be derived once for any particular array.

4. MSD BEAMFORMING

Given some desired pattern Wdes(k,φ) ∈ F , we need to find
the achievable pattern which minimizes the MSE as defined
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in (5). From functional analysis, this optimal pattern will be
the orthogonal projection of Wdes(k,φ) onto the subspace W
[15]. This projection is denoted by B : F →W , and is shown
in Figure 2. As the continuous modes Un(k,φ) form an or-
thonormal basis for W , this projection can be performed by
projecting onto the modes,

Wach(k,φ) =
M−1∑
n=0

bnUn(k,φ), (20)

where

bn =
〈
Wdes,Un

〉
F =

∫ k2

k1

∫ π

−π
Wdes(k,φ)U∗

n (k,φ)kdφdk.

(21)

For all but the simplest patterns, this projection will need
to be calculated numerically. Quadrature techniques can be
used to calculate the 2D integral to any desired degree of ac-
curacy with low computational complexity [16].

The modal coefficients bn can now be used to find
the beamformer weighting coefficients. Combining (19) and
(20),

Aw =Wach(k,φ) =
M−1∑
n=0

bnUn(k,φ) =
M−1∑
n=0

bn√
λn

Aun. (22)

Equating both sides, the weighting coefficients are

w =
M−1∑
n=0

bn√
λn

un. (23)

These coefficients can then be used in Definition 2 to create
a beamformer with pattern Wach(k,φ).

4.1. The MSD beamforming algorithm

In summary, the steps of the algorithm are the following.

(1) Given a set of M space-time sampling positions
(xm, tm), build the matrix Z using (15).

(2) Find the eigenvectors un and eigenvalues λn of Z, and
use (17) to build the continuous modes Un(k,φ).

(3) Given some desired beam pattern Wdes(k,φ), the opti-
mal beamformer weighting coefficients will be

w =
M−1∑
n=0

〈
Wdes,Un

〉
F√

λn
un. (24)

Note that whilst the eigendecomposition in the second step
is the most computationally intensive part of the process, the
first two steps depend only on the space-time sampling po-
sitions, and need only be recalculated if the rare event that
the space-time sampling geometry is changed. Thus, for an
existing array, only the third step must be performed when
the desired pattern changes. This is particularly important
for adaptive beamforming, where the desired beam pattern
may change over time. In this situation, the third step must
be constantly recalculated to ensure that the designed beam
pattern remains optimal.

5. DESIGN EXAMPLES

In this section, we apply the MSD design technique described
in the previous section to an acoustic beamforming problem
with c = 350 m/s, and a design frequency range between f1 =
400 Hz and f2 = 4 kHz.

5.1. Frequency-invariant beamforming

One of the more common problems in broadband beam-
forming is frequency-invariant beamforming, where the aim
is to design a beam with identical angular response across all
design frequencies [5–7]. To use the MSD technique, some
desired pattern is needed. Thus, a frequency-invariant pat-
tern is used with a beam centre at π/2, and a beam width of
π/5.

Consider a 5-element uniform circular array (UCA) de-
signed for frequency f2, with a radius such that the elements
are a half-wavelength apart, and 32 time samples are taken at
the Nyquist rate. The frequency-invariant design pattern is
projected into the modal basis, and the resulting achievable
beam pattern is shown in Figure 3(a).

As mentioned earlier, one major strength of the MSD
technique is that it is equally applicable to sparse arrays. To
demonstrate this, a second array with the same spatial radius,
but with only 3 elements, is used. Also, the sampling rate is
halved so that only 16 samples are taken over the same time
period. Figure 3(b) shows the resulting optimal achievable
pattern. Whilst the pattern is clearly inferior to that for the
denser array, it is still reasonably directional and frequency
invariant.

A comparison with traditional frequency-invariant de-
sign techniques is difficult, as these techniques tend to be
based on long time sequences, and perform poorly on the
short sparse sequences used in this example. Note that since
the MSD algorithm is optimized over all possible beamform-
ers, it is impossible for any other design technique to produce
a better pattern (in terms of the MSE).

5.2. Spot beamforming

Whereas most of the work in broadband beamforming has
focused on frequency-invariant design, the MSD design tech-
nique is far more versatile. Consider the pattern shown in
Figure 4(a), which filters sources based on both frequency
and direction—effectively applying different bandpass filters
to signals depending on angle of arrival. Projecting this pat-
tern into the modal basis for the 5-element, 32-sample array
used in the previous example results in the achievable pattern
shown in Figure 4(b).

6. IMPLEMENTATION ISSUES: OVERSAMPLING
AND SUPER-RESOLUTION

Traditional sensor arrays are designed around a particu-
lar frequency—sensors are placed a half-wavelength apart,
and time samples are taken at the Nyquist rate. In broad-
band beamforming, the array is usually designed around the
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Figure 3: Frequency-invariant beamforming. (a) optimal beampattern for 5-element UCA with half-wavelength spacing and Nyquist sam-
pling at the highest design frequency (5 elements, 32 time samples); (b) optimal beam pattern for UCA with the same radius as above, but
only with 3 sensor elements and a halved sampling rate (16 samples).

1

0.5

0

−0.5
4000

3000
2000

1000
0

Frequency (Hz) −4
−2

0
2

4

Azimuth angle (φ)

(a)

1

0.5

0

−0.5
4000

3000
2000

1000
0

Frequency (Hz) −4
−2

0
2

4

Azimuth angle (φ)

(b)

Figure 4: Spot beamforming: (a) desired pattern, Wdes(k,φ); (b) optimal achieved pattern, Wach(k,φ).

maximum design frequency [6]. Space-time sampling denser
than this benchmark is known as oversampling.

The main advantage of oversampling is the large num-
ber of available space-time samples. The space of achievable
beam patterns grows in dimension, and a wider range of
patterns becomes achievable. In theory, we can get infinite
levels of resolution by continually increasing sampling den-
sity.

This result is a due to the super-resolution (or super-
gain) effect where infinite levels of directivity can be
achieved using closely spaced sensor elements [9, 10]. Super-
resolution beamformers tend to be unsuitable for real-world
applications, as they require huge amounts of energy in
weighting coefficients, and become extremely sensitive to
small measurement errors [11, 12]. In this section, we will ex-
amine how these problems arise in the MSD technique, and
how to manage the negative effects.

Consider a beam pattern defined by a set of modal co-
efficients bn in (20). The energy required to implement this
pattern as a beamformer can be found by taking the norm of
(23),

‖w‖2 =
M−1∑
n=0

∣∣bn∣∣2

λn

∥∥un∥∥2 =
M−1∑
n=0

∣∣bn∣∣2

λn
. (25)

The error sensitivity can be found by adding an error
term, denoted by em, to each field observation in (2). Con-
sider an error modeled as spatially and temporally uncorre-
lated, with variance E{|em|2} = σ2. The perturbed beam-
former output will be

z̃
(
ts
) =

M−1∑
m=0

wm
[
f
(
xm, tm + ts

)
+ e
(
xm, tm + ts

)]
, (26)



Michael I. Y. Williams et al. 7

×104

10

9

8

7

6

5

4

3

2

1

0

−1

E
ig

en
va

lu
es

λ n

0 50 100 150 200

n

M = 160 (5 spatial sensors, 32 time samples)
M = 48 (3 spatial sensors, 16 time samples)
M = 192 (6 spatial sensors, 32 time samples)

48 160 192

Figure 5: Effect of increasing sampling density in space and time
on the eigenvalues λn. All curves are for a UCA with the same ra-
dius (half-wavelength spacing for 5 elements) and sampling over
the same elapsed time (time for 32 samples at the Nyquist rate).

and the expected error due to the perturbation is

E
{∣∣z̃(ts)− z

(
ts
)∣∣2
}
=

M−1∑
m=0

M−1∑
m′=0

wmwm′∗E
{
emem′∗

}
(27)

= σ2‖w‖2. (28)

Thus, the input energy ‖w‖2 is effectively the white noise gain
[1]. Equations (25) and (28) show that the white noise gain
of a modal beamformer depends directly on the inverse of
the eigenvalues λn. Figure 5 shows that as sampling becomes
denser, the eigenvalues tend to converge towards zero—the
sparse 3-element array has very few small eigenvalues, while
more than half of the eigenvalues for the oversampled 6-
element array are close to zero. So, as space-time sampling
is made denser, the eigenvalues approach zero, and the input
energy and error sensitivity will approach infinity.

To avoid this problem, but still retain the ability to ex-
ploit dense arrays and super-resolution, we must make some
changes to the modal subspace projection. Consider the re-
duced set of eigenvalues λn ≥ ζ , where ζ is some threshold.
This set will have a reduced number of elements M̃ ≤M. Ef-
fectively, we are throwing away the modes which are causing
the problems—those with eigenvalues closest to zero. We can
now alter (23) to build beamformer weights from a reduced
set of modes,

w =
M̃∑
n=0

bn√
λn

un. (29)

The effect of threshold is shown in Figure 6 for the 5-element,
32-time-sample UCA considered earlier (and assuming a
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Figure 6: Effect of different thresholds ζ on the white noise gain
‖w‖2 for a 5-element, 32-time-sample UCA.

beam pattern with uniform modal coefficients). It is clear
that a balance must be struck between a high threshold which
will use more modes and produce the best beam pattern, and
a low threshold which will use fewer modes and minimize
the error sensitivity and input energy. In this way, super-
resolution can be achieved for high ζ if high input power
and error sensitivity can be tolerated. Typically, a good choice
of threshold is somewhere on the “knee” of the curve in
Figure 5, where the eigenvalues converge rapidly to zero.

7. EXTENSIONS AND FURTHER WORK

Although the MSD technique has been presented in the con-
text of the broadband far-field beamforming problem, the
same basic concept can easily be applied to more complex
beamforming problems.

Equation (1), which maps a far-field source distribution
to a 2D wavefield, can be altered to model a more com-
plex mapping. Alternative mappings might allow near-field
sources, sources distributed in both azimuth and elevation
angles, or wavefields in 3D space. Although this altered map-
ping will change the form of the modal basis, the same ba-
sic methods and derivations can be applied. These extensions
will be explored in a future paper.

We showed in Section 4.1 that one strength of this algo-
rithm is that much of the modal decomposition processing
can be performed offline. One important area for further
work, however, is an investigation of how the computational
complexity of the MSD technique compares with other com-
parable design techniques.

8. CONCLUSION

A new technique for broadband far-field beamforming has
been proposed which produces an optimal beamformer for
any set of space-time sampling positions. The MSD tech-
nique is based on projecting a desired pattern into the sub-
space of achievable patterns, and is optimal in the sense
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that it minimizes the mean-squared error (MSE). The main
advantage of the technique is its versatility as it can be ap-
plied to both sparse and dense arrays, nonuniform and asyn-
chronous time sampling, and dynamic arrays where sensors
can move throughout space. Design examples were presented
to show that the technique is applicable to both frequency-
invariant and spot beamformings. For oversampling arrays,
a restricted modal expansion allows control over both super-
resolution and its associated negative effects. Future work
will extend this basic technique to more complex situations
including near-field sources, and azimuth/elevation beam-
forming.

APPENDIX

A. DERIVATION OF MODAL BASES

Consider the operator A : S →W ,

Wach(k,φ) = Aw =
M−1∑
m=0

wme
jk[ctm+xm cos(θm−φ)]. (A.1)

As A is a bounded, M-dimensional operator, there exists
an adjoint operator A∗ : W → S such that

〈
Wach,Ay

〉
F = 〈A∗Wach, y

〉
S . (A.2)

Combining (A.1) and (A.2), the adjoint operator can be de-
fined as

y = A∗Wach(k,φ), (A.3)

where the elements of y are given by

ym =
∫ k2

k1

∫ π

−π
Wach(k,φ)e− jk[ctm+xm cos(θm−φ)]kdφdk. (A.4)

Since A is a bounded linear operator, the operators A∗A
and AA∗ are positive, selfadjoint linear operators.

The M orthonormal eigenvectors of the operator A∗A,
denoted by un, form an orthonormal basis for the space S of
weighting coefficients [15],

λnun = A∗Aun, (A.5)

As A∗A is positive and selfadjoint, the eigenvalues λn are real
and nonnegative. Thus, it makes sense to order the eigenval-
ues so that λ0 ≥ λ1 ≥ · · · ≥ λM−1. Substituting (A.1) and
(A.4) into (A.5), this eigenequation simplifies to an M ×M
matrix eigenvector equation

Zun = λnun, (A.6)

where the elements of the M ×M matrix Z are given by

Zm,m′ =
∫ k2

k1

∫ π

−π
e jk[c(tm′−tm)+xm′ cos(θm′−φ)−xm cos(θm−φ)]kdφdk

= 2π
∫ k2

k1

e jkc(tm′−tm)J0
(
k
∥∥xm − xm′

∥∥)k dk.
(A.7)

In general, this integral has no closed-form solution, but
can be calculated numerically to any required degree of ac-
curacy.

From the same principles, the M orthonormal eigenfunc-
tions of the operator AA∗, denoted by Un(k,φ), form an or-
thonormal basis for the space W of achievable beampatterns,

λnUn(k,φ) = AA∗Un(k,φ), (A.8)

where the eigenvalues λn are the same as those in (A.5). Sub-
stituting (A.1) and (A.4) into (A.8), this equation simplifies
to a Fredholm eigenfunction equation with an Mth-order
degenerate kernel, for which there are well-known solution
techniques [17]. The solutions can be expressed in terms of
the vector modes,

Un(k,φ) = 1√
λn

Aun. (A.9)

Substituting from (A.1), the modal basis functions for W are
given by

Un(k,φ) = 1√
λn

M−1∑
m=0

un,me
jk[ctm+xm cos(θm−φ)], (A.10)

where un,m denotes the mth element of the nth vector mode.
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